\[Q(\theta, \theta^{(i)}) = E_Z[\log P(Y, Z|\theta) | Y, \theta^{(i)}]\]
\[f(n) =
\begin{cases}
n/2, & \text{if $n$ is even} \\\\
3n+1, & \text{if $n$ is odd}
\end{cases}\]
\[\begin{equation}
\begin{split}
\cos 2x &= \cos^2 x - \sin^2 x\\\\
&= 2\cos^2 x - 1
\end{split}
\end{equation}\]
\[\begin{equation}
\begin{split}
\frac{\partial^2 f}{\partial{x^2}} &= \frac{\partial(\Delta_x f(i,j))}{\partial x} = \frac{\partial(f(i+1,j)-f(i,j))}{\partial x} \\\\
&= \frac{\partial f(i+1,j)}{\partial x} - \frac{\partial f(i,j)}{\partial x} \\\\
&= f(i+2,j) -2f(f+1,j) + f(i,j)
\end{split}
\nonumber
\end{equation}\]
- adf
- vyu8v